
Graphs: 

DFS (Depth First Search) and BFS (Breadth First Search) are search algorithms used for 

graphs and trees. 

 Breadth-first search (BFS) : starts at the tree root and explores the neighbor nodes first, 

 before moving to the next level neighbors. 

 Start from node s. 

 Visit all neighbors of node s. 

 Then visit all of their neighbors, if not already visited 

 Continue until all nodes visited 

 Depth-first search (DFS) :  the idea is to travel as deep as possible from neighbor to 

 neighbor before backtracking. 

 First visit all nodes reachable from node s (ie visit neighbors of s and their neighbors) 

 Then visit all (unvisited) nodes that are neighbors of s 

 Repeat until all nodes are visited 

 

A directed graph G, is a pair (V, E) where V is a set of vertices (nodes) and E is a set of directed 

edges. A directed graph is often called a digraph. 

 

An undirected graph is also a pair (V,E) where V is the set of vertices and E is the set of edges. 

Edges are bi-directional. A to B then B to A. 

 A directed edge is an edge from one vertex to another. Sometimes called arcs. 

 A symmetric diagraph is a directed graph in which every directed edge has a reserve edge: a to 

b then b to a. 

Adjacent: Two vertices a and b are adjacent if there is an edge connecting them. 

Neighborhood NG(v), of a vertex v in G is the set of vertices that are adjacent to it. 

Vertices u and v are neighbors if they are adjacent. So we say v is a neighbor of u and u is a 

neighbor of v. Every vertex have (n-1) neighbors. 

Two vertices u and v are neighbors if they are adjacent. 

Incident: Edges connecting a vertex v to its neighbors are said to be incident on v. 

Degree of a vertex v is the number of edges incident on v . (the sum of degree = 2 * (no of 

edges). 

The minimum degree of a vertex in a graph G is called the minimum degree of G, denoted δ(G). 

The maximum degree of G is the maximum among all the vertex degrees in G. It is denoted Δ(G). 

https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology


 

Planar graph: a graph without edge crossing(K4) 

Smallest non-planar with 5 vert 

Any non-Planar graph contains K5   or   K3,3  

A subgraph of G is a graph G’= (V’, E’) where V’ is a subset of V and     E’ is a subset of E. 

it is zero or more vertex/edges deletion. 

A proper subgraph of G is a subgraph G’ of G such that:  G’ ≠ G and G’ different from empty 

set.  

An induced subgraph: its only obtained by vertex deletion , if an edge exist in G the its must 

exist in the induced subgraph 

Handshaking Lemma: The sum of degrees in a graph is twice the number of edges. 

number of edges is n(n-1)/2 by handshaking 

A complete graph is an undirected graph such that any two vertices are connected (adjacent).The 

complete graph on n vertices is denoted by Kn. 

Clique: a complete subgraph 

Path: graph (or subgraph) whose vertices can be ordered so that two vertices are adjacent if and 

only if they are consecutive in the list.Where all nodes in subgraph are connected to every other 

node in that subgraph. We often denote a path of length n by Pn 

 

Cycles: Cn: equal number of vertices and edges. Cycle in a diagraph is a non-empty path form 

one vertex back to itself. 

Acyclic: Graph with no cycle. 

Reachable: a vertex is reachable from another vertex if  there is a path between them. 

Connected components:  Maximal connected subgraphs  of a graph are the connected 

components of the graph 

Strongly connected: A diagraph is strongly connected if there’s is a path between every pair of 

vertices 

Tree: Connected ,not cycle. 

Forest: not connected, not cycle 

Topological order: is a sequence of vertices that can be visited when traversing a DAG(Directed  

   acyclic graph.  

   If a digraph has a cycle, it has no topological order 



 

An adjacency list of a vertex v ∈Vis the list Adj[v]of vertices adjacent to v 

A shortest path from u to v is a path of minimum weight from u to v. The shortest-path weight 

from u to v is defined as δ .  

 

A subpath of a shortest path is a shortest path. 

If a graph G contains a negative-weight cycle, then some shortest paths may not exist. 

 If all edge weights w(u, v)are nonnegative, all shortest-path weights must exist. 

 

The Bellman–Ford algorithm is an algorithm that computes shortest paths from a single source 

vertex to all of the other vertices in a weighted digraph. 

 Bellman–Ford can be used on graphs with negative edge weights, as long as the graph 

contains no negative cycle reachable from the source vertex s.  

https://www.youtube.com/watch?v=iTW2yFYd1Nc 

A minimum spanning tree: A minimum spanning tree (MST) is the tree subgraph T of G such 

that it (a) contains all vertices of G and (b) has the minimum sum of edge weights. 

 

A single graph can have many different spanning trees. 

An algorithm employed to find minimum spanning trees is Prim’s algorithm. 

 

A spanning subgraph of a graph G is one that contains all vertices of G, but “may”not contain 

all edges. 

 

 the cost of a spanning tree is the sum of the weights of all its edges. 
 

 

A problem is said to have optimal substructure if an optimal solution can be constructed 

efficiently from optimal solutions of its subproblems. This property is used to determine the 

usefulness of dynamic programming and greedy algorithms for a problem. 

 Optimization problem: Seeking for the best possible solution with the least or best cost 

Dynamic Programming:  

In one sense, dynamic programming can be thought of as the opposite of divide-and-conquer. 

Instead of starting from a top-down, divide-and-conquer approach (like recursion), dynamic 

programming instead solves the smallest subproblems first. It then caches these smallest solutions 

into a table and uses those solutions to progressively solve the next-larger-set of problems. A 

dynamic programming is a bottom-up solution method, in contrast to recursion as a top-down 

solution method. 

 

 A dynamic programming is a method for solving a complex problem by breaking it down 

into a collection of simpler subproblems, solving each of those subproblems just once 

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Negative_cycle


Dp applies under 2 conditions: 

1- Optimal substructure: an optimal solution can be constructed efficiently from the optimal 

solution of the subproblems. 

  A given problems has Optimal Substructure Property if optimal solution of the given 

problem can be obtained by using optimal solutions of its subproblems. 

For example the shortest path problem has following optimal substructure property: If a 

node x lies in the shortest path from a source node u to destination node v then the 

shortest path from u to v is combination of shortest path from u to x and shortest path 

from x to v. 

2- Overlapping subproblems: Revisiting and solving the same problem repeatedly 

     overlapping subproblems (problem can be broken down into subproblems which are  

     reused several times)    

The longest common subsequence (LCS) problem is the problem of finding the 

longest subsequence common to all sequences in a set of sequences.  
https://www.youtube.com/watch?v=P-mMvhfJhu8 

Code: 

 
public static int longestCS(char str1[], char str2[], int length[][]) { 
 int m = str1.length; 
 int n = str2.length; 
  
 for (int i = 1; i < m; i++) 
  for (int j = 1; j < n; j++) { 
   if (str1[i] == str2[j]) 
    length[i][j] = length[i-1][j-1] + 1; 
   else if (length[i-1][j] >= length[i][j-1]) 
    length[i][j] = length[i-1][j]; 
   else 
    length[i][j] = length[i][j-1]; } 
  return length[m-1][n-1];} } 

The longest increasing subsequence (LIS) problem is to find a subsequence of a 

given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in 

which the subsequence is as long as possible. 

https://www.youtube.com/watch?v=CE2b_-XfVDk 

Code: 
public static int LongestIS(int A[], int n) { 
 int sol[] = new int[n]; 
 int ans = 0; 
 sol[0] = 1; 
 for (int i = 1; i < n; i++) { 
 sol[i] = 1; 
   for (int j = 0; j < i; j++) 
    if (A[j] < A[i]) 
     if (sol[i] < sol[j] + 1) 
     sol[i] = sol[j] + 1; 
    if (ans < sol[i]) 
    ans = sol[i]; } 
    return ans ;}} 
 

https://en.wikipedia.org/wiki/Overlapping_subproblem
https://en.wikipedia.org/wiki/Overlapping_subproblem
https://en.wikipedia.org/wiki/Subsequence
https://www.youtube.com/watch?v=P-mMvhfJhu8
https://en.wikipedia.org/wiki/Sequence


Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, 

which may represent, for example, road networks 

From a dynamic programming point of view, Dijkstra's algorithm is a successive 

approximation scheme that solves the dynamic programming functional equation for the shortest 

path problem by the Reaching method 

https://www.youtube.com/watch?v=WN3Rb9wVYDY 

The pseudo code:  

while Q ≠∅ 

    do u ←EXTRACT-MIN(Q) 

        S←S∪{u}       (SAME AS SLIDES) 

 for each  v ∈Adj[u] 

       do if d[v] > d[u] + w(u, v) 

  then d[v] ←d[u] + w(u, v) 

 

The knapsack problem  is a problem in combinatorial optimization(is a topic that consists of 

finding an optimal object from a finite set of objects)  Ex:Given a set of items, each with a weight 

and a value, determine the number of each item to include in a collection so that the total weight 

is less than or equal to a given limit and the total value is as large as possible. (slides) 

  Meaning, given n items of weight wi  and value vi find the items that should be taken such 

that the weight is less than the maximum weight W and the corresponding total value is 

maximum.  

 

Greedy: 

A greedy algorithm always makes the choice that looks best at the moment. That ism it makes a 

locally optimal choice in the hope that his choice will lead to a globally optimal solution. A 

greedy algorithm obtains an optimal solution to a problem by making a sequence of choices. At 

each decision point, the algorithm makes choice that seems best at the moment. This decision 

does not always lead to an optimal solution. 

 A greedy algorithm is an algorithm that follows the problem solving heuristic of 

making the locally optimal choice at each stage with the hope of finding a global 

optimum. (a heuristic is a technique designed for solving a problem more quickly ) 
 A greedy algorithm always makes the choice that looks best at the moment 
 

 

 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Dynamic_programming
https://www.youtube.com/watch?v=WN3Rb9wVYDY
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Problem_solving


Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for 

a weighted undirected graph. This means it finds a subset of the edges that forms a tree that 

includes every vertex, where the total weight of all the edges in the tree is minimized. The 

algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at 

each step adding the cheapest possible connection from the tree to another vertex.  

https://www.youtube.com/watch?v=z1L3rMzG1_A 

 

The pseudo code: 

Q←V 

key[v] ←∞ for all v ∈V 

key[s] ←0 for some arbitrary s ∈V 

while Q≠∅        (SAME AS SLIDES) 

    do u← EXTRACT-MIN(Q)  

        for each v ∈Adj[u] 

           do if v ∈Q and w(u, v) < key[v] 

                 then key[v] ←w(u, v) 

  [v] ←u degree 
 

 

Kruskal's algorithm is a minimum-spanning-tree algorithm where the algorithm finds an edge 

of the least possible weight that connects any two trees in the forest. It is a greedy algorithm in 

graph theory as it finds a minimum spanning tree for a connected weighted graph adding 

increasing cost arcs at each step. 

https://www.youtube.com/watch?v=71UQH7Pr9kU 

 

CHECK THE SLIDES EXAMPLE  

 

Greedy AND Dynamic programming: 

In dynamic programming, we make a choice at each step, but the choice may depend on 

solutions to subproblems. In a greedy algorithm, we make whatever choice seems best at the 

moment and then solve the subproblems arising after the choice is made. The choice made by a 

greedy algorithm may depend on choices made so far, but it cannot depend on any future 

choices or on the solutions to subproblems. Thus, unlike dynamic programming, which solves 

the subproblems bottom up, a greedy strategy usually progresses in top-down fashion, making 

one greedy choice after another, iteratively reducing each given problem instance to a smaller 

one. 

 

 

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Weighted_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_theory
https://www.youtube.com/watch?v=z1L3rMzG1_A
https://www.youtube.com/watch?v=71UQH7Pr9kU


Greedy vs. Dynamic programming: 

1- DP follows a buttom-up approach, whereas greedy foloows top down. 

2- Dp has overlapping subproblems, and the solutions of the subproblems are used in order 

to compute the optimal solution of a larger problem. Whereas in greedy solutions doesn’t 

depend on the subproblems since it makes a decision based on the current available 

choices and picks the optimal. 

 

Class P: Consists of problems that are solvable in polynomial time. O(kn) for some constant K. 

Class NP: consists of problems that can be verified in polynomial time, meaning that given a 

specific solution for a problem. Ex: VC. 

Backtracking algorithms are based on a depth-first recursive search 

 

The classic example of the use of backtracking is the eight queens puzzle, that asks for all 

arrangements of eight chess queens on a standard chessboard  

Vector Cover: 

A vertex cover of a graph G is a subset of vertices S ⊆ V (G) such that every edge has an 

endpoint in S 

Pseudo Code: 

CHECK CB 

A minimal vertex cover :is a vertex cover that contain any other vertex ,where if u try to make it 

smaller you lose the property(no more vertex cover) 

A minimum is minimal with the least number of elements 

Queens: 

The queen puzzle is the problem of placing n chess queens on an n×n chessboard so that no two 

queens threaten each other. Thus, a solution requires that no two queens share the same row, 

column, or diagonal. 

Code: 

boolean Queens(int [] board ,int row){ 

 if(row ==8) 

  return true; 

 for(int col = 0 ; col<8;col++){ 

  if(feasible(board,row,col)){ 

   board[row]=col; //placing queen 

   row++; 

   if(Queens(board,row)) 

    return true; 

   row--;}} //backtracking 

    return false;} 

https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Queen_(chess)
https://en.wikipedia.org/wiki/Chessboard
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Queen_(chess)


3Color: 

  Code in class: 
 boolean 3color(int[][]al,int deg[],int color,int vertex){ 

 int(vertex==deg.length) 

 return true; 

  

 for(int  i = 1 ; i <=3; i++){ 

  if(feasible(al,deg,col,vertex,i)){ 

    

   color[vetex]=i; 

 if(3color(al,deg,col,vertex+1)) 

  return true; 

 col[vertex]=0; }}//backtracking 

 return false; 

} 

 

Clique: 
the clique problem refers to any of the problems related to finding 

particular complete subgraphs in a graph(LIKE: sets of elements where each pair of elements is 

connected) 

 

Pseudo code: 
boolean clique(graph G, int k ) 

 pick v ∈ V(G) 

 if(deg[v]=n-1) 

  return clique(G-v,n-1); 

 if(clique(G-v,k))  //v not in clique 

  return true; 

 H=G[N(v)];   //graph induced by N(v) 

 return clique(H,k-1); 

 

A divide and conquer algorithm consists of two parts: 

Divide the problem into smaller subproblems of the same type, and solve these subproblems 

recursively 

Combine the solutions to the subproblems into a solution to the original problem 

 

 

 

 

 

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
https://en.wikipedia.org/wiki/Graph_(mathematics)


Big-O: 

Algorithms Best case Worst case Stable In-place 

Heap Sort O(nlogn) O(nlogn) No yes 

Merge Sort O(nlogn) O(nlogn) Yes no 

Quick sort O(nlogn) O(n
2
) No Yes 

Bubble Sort O(n) O(n
2
) Yes Yes 

Insertion O(n) O(n
2
) Yes Yes 

Selection O(n
2
) O(n

2
) No Yes 

Counting O(n+k) O(n+k) Yes NO 

BST O(nlogn)/omega(logn) O(n) Yes Yes 

Bucket Sort O(n+k) O(n
2
) Yes NO 

Radix Sort O(nk) O(nk) Yes NO 

 Notes: 

Il asr3 - az8ar   but  Il akbar  abt2 

Binary Search in sorted array 0(logn) 

Inserting element in BST O(n) 

Inserting in AVL O(logn) 

Master Theorm: 

 

AVL Trees :  

- is a balancing binary search tree. It was the first data structure to be invented. 

- is a organized binary tree 

- each node has a value 

- it includes insertion , searching and deletion 

- The balanced factor = height left – height right  

 - unbalanced binary tree needs O(n) time in the worst-case 

https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/Data_structure


To know if the tree is AVL : 

Boolean  isAVL( node T) 

 if(T==null) 

 return true ; 

if(math.abs(height(T.left)-height(T.right)>1) 

 return false; 

return isAVL(T.left) && isAVL(T.right); 

 

To calculate the height in a binary search tree : 

height(node T):  

   if node == null: 

        return -1 

   else: 

        return max(height (T.left), height(T.right) + 1 

 

To calculate the number of nodes in a binary search tree: 

 

count(node T):  

   if node == null: 

        return 0 

   else: 

        return 1+ count(T.left) + count(T.right) 

   

Codes: concerning DFS/BFS: 

public static void Bfs(int[][] al, int[] d) { 
  Queue<Integer> q = new LinkedList<Integer>(); 

  int[] color = new int[d.length]; 

  int u, v; 

  q.offer(0); 

  color[0] = 1; 

 

  while (!q.isEmpty()) { 

   u = q.poll(); 

   color[u] = 2; 

   System.out.println(u); 

   for (int j = 0; j < d[u]; j++) { 

    v = al[u][j]; 

    if (color[v] == 0) { 

     q.offer(v); 

     color[v] = 1; }}}} } 

 



public static void Dfs(int[][] al, int[] d){ 
    Stack <Integer> q = new Stack<Integer>(); 

    int[] color = new int[d.length]; 

    int u, v; 

    q.push(0); 

    color[0] = 1; 

       

      while(!q.empty()) 

        { 

          u = q.pop(); 

           color[u] = 2; 

           System.out.println(u); 

           for(int j = 0; j < d[u]; j++) 

             { 

                v = al[u][j]; 

                if(color[v] == 0) 

                 { 

                   q.push(v); 

                   color[v] = 1; } } } } 

public static void checkCycle(int al[][], int deg[]) { 
  int color[] = new int[deg.length]; 

  Queue<Integer> q = new LinkedList<Integer>(); 

  int u, v; 

 

  for (int i = 0; i < color.length; i++) { 

   if (color[i] == 0) { 

    q.offer(i); 

    color[i] = 1; 

 

    while (!q.isEmpty()) { 

     u = q.poll(); 

     for (int j = 0; j < deg[u]; j++) { 

      v = al[u][j]; 

      if (color[v] == 0) { 

       q.offer(v); 

       color[v] = 1; 

      } else { 

       System.out.print("has cycle"); 

       return; } } 

       color[u] = 2; } } } 

      System.out.print("has no cycle"); } } 

 

 

 

 

  



 public static boolean bipartite(int al[][], int deg[]) { 
  int u, v; 

  Queue<Integer> q = new LinkedList<Integer>(); 

  int color[] = new int[deg.length]; 

 

  for (int i = 0; i < deg.length; i++) { 

   if (color[i] == 0) { 

 

    q.offer(i); 

    color[i] = 1; 

 

    while (!q.isEmpty()) { 

 

     u = q.poll(); 

    for (int j = 0; j < deg[u]; j++) { 

      v = al[u][j]; 

      if (color[v] == color[u]) 

       return false; 

      if (color[v] == 0) { 

       q.offer(v); 

       color[v] = 3 - color[u];   

       } } } } } 

       return true; } 

      

 

public static boolean BfsConnected(int[][] al, int deg[]) { 
int[] color = new int[deg.length]; 
Queue<Integer> q = new LinkedList<Integer>(); 
 
int u, v, count = 0; 
for (int i = 0; i < color.length; i++) { 
 if (color[i] == 0) { 
  count++; 
  if (count > 1) { 
   return false; 
  } 
  q.add(i); 
  color[i] = 1; 
  while (!q.isEmpty()) { 
   u = q.poll(); 
   color[u] = 2; 
   for (int k = 0; k < deg[u]; k++) { 
    v = al[u][k]; 
    if (color[v] == 0) { 
     q.add(v); 
     color[v] = 1; } } } } } 
      return true; } 

 



 

Notes: 

-In case of a planar graph we can use 4 colors 

-Vertices can’t have same color 

-Best algorithm for K coloring is : O *(2
k
) (exponential) 

-Check from slides: activity selection, running time of prims…etc 

+codes of recursion(C.B)   

 

 

Code for MAX SUM(we did with yassin):  
public class maxsum { 
// i have a seq b2lbo number w bade le2e akbr sum bil array through subseq 
 // its dp 
 public static void main(String[] args) { 
  // TODO Auto-generated method stub 
  Scanner scan=new Scanner(System.in); 
  int n = scan.nextInt(); 
  int [] array = new int[n]; 
  for(int i=0;i<array.length;i++){ 
   array[i]=scan.nextInt(); 
  } 
  int [] sol = new int[n+1]; 
  sol[0]=array[0]; 
  for(int i = 1 ; i <array.length;i++){ 
   if(array[i]>=0){ 
    if(array[i-1] >=0){ 
     sol[i]+=sol[i-1]+array[i]; 
    } 
    else sol[i]=array[i];} 
       
   else sol[i]=array[i]; 
  } 
  for(int i = 0 ; i <array.length;i++){ 
   System.out.println(sol[i]+ " "); 
  } 
  System.out.println(); } } 
   
   
   
   
   

 


